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NOMENCLATURE 

constant defined in (1); 
suitably chosen positive quantity; 
pressure; 
density; 
frequency; 
time; 
Cartesian coordinates; 
coefficient of viscosity; 
kinematic coefficient of viscosity; 
velocity component in the x-direction; 
injection velocity; 
temperature of the fluid; 
constant temperatures of the walls; 
distance between the walls; 
specific heat ; 
acceleration due to gravity; 
thermal conductivity; 
non-dimensional velocity components given by 
(7a) and (7b); 
vh/v, cross flow Reynolds number; 
h(o/v)1’2. frequency parameter; 
y/h, dimensionless distance; 
T-T0 

T_T. dimensionless temperature; 
1 0 

Qohh non-dimensional steady temperature; 
F(q), G(n), non-dimensional functions defined in (12) 

and (13); 
Pr, pgc/k, Prandtl number; 
EC. (Ah2/v)‘/gc(TI -To), Eckert number; 
PO, heat transfer at the injection wall; 
Ql. heat transfer at the suction wall; 
IDo/, lD,l, amplitudes of rate of heat transfer at the 

injection and suction walls; 
GL~, ai, phases of rate of heat transfer at the injection 

and suction walls. 

1. INTRODUCTION 

THE PROBLEMS of fluid flow in a porous pipe and channel 
have been studied in recent past by many workers [l-5] 
with a view to understanding some practical phenomena 
like transpiration cooling and gaseous diffusion. Particularly 
the pulsatile flow in a porous channel is important in the 
dialysis of blood in artificial kidneys [7]. The present paper 
considers the heat transfer to the pulsatile flow in a porous 
channel, treating blood as a Newtonian viscous fluid [8]. 

2. MATHEMATICAL ANALYSIS 

Consider the pulsatile flow of fluid between two infinitely 
long parallel and porous plates, distant h apart, which is 
driven by the unsteady pressure gradient 

-ig= A{l+sexp(iwt)}, 

where A IS a known constant, E is a suitably chosen positive 
quantity and o is the frequency. Let the x-axis be along 
one plate and the y-axis normal to it. The plates y = 0 and 
y = h are maintained at uniform temperatures TO and TI 

respectively. On one plate some fluid is injected with a 
velocity u and removed at the opposite plate at the same 
rate. So, with the help of the continuity equation, the 
momentum equation and the energy equation reduce to 

where all the variables have their usual meaning. The 
boundary conditions are 

u=O,T=To at y=O 

u = 0, T = TI at y = h. 
(5) 

The solution of (2) is in the form; 

a = $ [ue +sui exp(iot)]. (6) 

where ~0 and ui are already given by Berman [S] and 
Wang [6] respectively as 

11, =- 
M2 

x 

II 

1 + {l -exp(m2)} exp(ml rt) - (1 -Wmd fw(m2d 

exp(m2) - ew(md I? 
VW 

where ml,? = f[Rf(R2+4iM2)112] = Al,2+iB1, q = y/h, 
R( =uh/v) IS the cross flow Reynolds number and M is a 
new non-dimensional parameter h(o/v)“2 characterising the 
frequency. Introducing the non-dimensional temperature 

(&T-TO 
T, - To ’ 

equations (4) and (5) become 

ae v ae k a% au 2 
pgc -+-- CT?+ 

[ 1 P 
at hart h aq h2(T~ -To) & ’ 0 

(8) 

O=O at n=O, 

6=1 at n=l. 1 
(9) 

In view of (6), the temperature 0 can be assumed to have 
the form 

R(q, t) = &&I) +&F(q)exp(iwt) +e2G(n)exp(2iwt). (10) 

On substituting (10) and (6) in (8), equating harmonic terms, 
retaining coefficients of .s2, and solving the corresponding 
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differential equations with the help of (7). we get 

Q,(q) = Cl +C2exp(PrRn)-P$ 
[ 

exp(2Rq) 
- ---_ 

2(2-Pr)[exp(RJ - 1; 2 

z 2exp(IQl --- 
PrR R(1 - Pr)(exp(R) - 11 

+ exp[(A~ + &hl 
4B: s: + sz 

[(2L3B,S,+L4St)sln2B,q 

F(q) = C3exp(ltrl)+C4exp(i.2rlJ 

2iPrEc 
f--- .~ 

(~-Pr)R~‘~exp(~~*)-exp(~~~)~ 

x 

m2 

R(1 -Pr)exp(Rq) 

exp(R) - 1 {n, exp(mlr?)-n2exp(m2rl)j 1 . 

(12) 

G(q) = CS exp(l3 v) + C6 exp(& nl 

PrEc 
+------ 

4M4(2-Pr){exp(mz) -exp(mt)i’ 

x [{l -exp(~?l~)~zexp(2m~ ~1 

+{(-exp(m1))2exp(2msn)-2(2-Pr)n3exp(Rg)]. 

(13) 
where 

Lr.2 = (A:.2+Bt)(l+exp(2A2,1) 

-2exp(Az,,)cos B1 I/NM-. 

Ls,., = 21-(A1Bl+A2B~)M2,1~(A1Az-B:)Ml,zj,:NMZ. 

MI,2 = LOT iexp(A,)+exp(Az)j cosBt.s~nB, 

+ jexp(A, +Az)j cos2B1. sm2Bt. 

St = 2A1+2Az-PrR, 

Sz= ((A,+A~)(A,+.~L-PYR)-~B:~~, 

N = exp(2Al)-texp(2Az)-2exp(At f AZ)cos2B1, 

mw(l--exptmz.l)t 

2mr mz(i -exp(mJl il -exp(m,)j 
ri3 = 

(l-Pr)RZ+2Prmlm, 
_I_. 

21,~ = f[PrR +(Pr2R2 +4iPrM’)““], (14) 

&,4 = )[PrR + (Pr2R2 + 8iPrM’)’ “1. 

Pr = pgc/k, EC = (Ah2/v)“/gc(TI -To). 

The expressions for the constants of ~nt~gr~tlon Ct, Cz, Cz, 
Cq. Cs and Cs are not gtven as they are too complicated. 

The rate of heat transfer per unit area at the Injection 
wall is given by 

-qoh ‘I?0 
Qo=_= - 

k(T1 - 7.0) 0 Pz n=O 

dQo dF 
- 
dn r,=o 

-i- &exp(iwr) -- 
dn ,,=o 

+... (IS) 

Equation (15) can also be written as 

&d!!! 
dz ‘I=0 

+&IDolcos(tot+ro)+.... (15a) 

where De( = De, + I&,), the coefficient of t exp(ttut) m (15). 
and tan x0( =&‘:Dor) are the amphtude and phase of the 
rate of heat transfer respectively. Similarly the rate of heat 
transfer at the suctton wall is given by 

dn ,~=,+~]D,Icos(~tf[~,)+ . . . . (16) 

where 
dF 

& = &,-tiD,, =- 
drl ,)=t 

and tancct = Dt,iDr,. The numerical values of /Del, lL&\. 
tanGto and tanat are entered in Table 2. 

3. DISCUSSIONS 

The steady temperature profiles are plotted m Fig. 1. The 
profiles are almost parabolic and there is no change in the 
character of the profiles as EC varies. But, as Eckert number 
Ec increases, the steady temperature increases. The effect of 
Eckert number EC on the steady heat-transfer coefficients 
IS shown in Table I. 

Table 1. (Pr = 3, R = 1, M = 10, E = 1) 

EC = 1 Ec = 2 Ec = 5 

cQb,,=c 0.233 0.308 0.531 
(&l,,=, - I .440 -3.199 - 8.993 

FIG. 1. Steady temperature profiles. 
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FIG. 2 Unsteady temperature profiles. 
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FIG. 3. Unsteady temperature profiles. 
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FIG. 4. Unsteady temperature profiles. 
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FIG. 5. Unsteady temperature profiles. 

We observed that the rate of heat transfer from the injection 
wall increases with EC while at the suction wall heat flows 
from the fluid to the plate even if Ti > To. 

Fixing Pr and R, the instantaneous temperature profiles 
are plotted (Figs. 2-5) to observe the effect of changing M 
(with EC fixed) and changing EC (with M fixed). From 
Figs. 2-4, it can be seen that the temperature decreases as 
M increases. The temperature profiles are almost parabolic 

HMT Vol. 20. No. 2-F 

for small values of M, but oscillate more for large values 
of M and the maximum temperature is shifted to the 
boundary layers near the walls. The temperature increases 
rapidly with increase in EC, which may be due to high 
viscous dissipation. Part of the temperature profiles are 
linear and the maximum occurs in the boundary layers near 
the suction wall (Figs. 2,5). It can be observed that there is 
no significant change in the character of the profiles as 
EC varies. 

The effect .of changing M (for fixed EC) and changing EC 
(for fixed M) on the values of the amplitude and phase of 
the rate of heat transfer is shown in Table 2. 

Table 2. (Pr = 3, R = 1) 

E 
M 1 1 1 1 

Values of Values of Values of Values of 
l&l ID11 tan aa tan a1 

1 1.1000 2.0140 0.2607 -0.1919 
3 0.2476 1.8301 0.1930 1.3740 
4 0.0926 0.3027 - 0.0560 3.0140 

10 0.0070 0.0169 - 1.3271 3.6310 

M 
E 1 1 1 1 

2 2.1130 4.0925 0.2607 -0.1919 
3 3.1730 6.0443 0.2607 -0.1919 
4 4.2304 8.0591 0.2663 -0.1952 

It may be observed that at the injection wall there is phase 
lag at higher frequency, but at the suction wall there is a 
phase lead. It is also to be noted that there is no effect of 
EC on the phase at both the walls. We also notice that at 
the injection wall the amplitude decreases with frequency 
uniformly for fixed EC, but at the suction wall it decreases 
suddenly by 83.6% when M is changed from 3 to 4. For 
fixed M the amplitude increases uniformly with EC at both 
the walls. 
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